Mechanical System Design
Kent Esslinger, Mike Mahoney
11/1/14
Q&A

- Please send emails with questions as they come up
 - email: mrm257@cornell.edu

- All questions will be answered at end
 - Please ask questions! We are here to make sure you get as much out of this as you can
Design Cycle Options

- **Multi-year Phasic Redesign**
 - Keep what worked, tackle new problems
 - Easy on resources - know what you can handle
 - Shorter design cycle for additional designs

- **Annual Complete Vehicle Redesign**
 - Good for training new members
 - Keeps knowledge of each subsystem with current team members
 - Requires lots of resources (materials and manpower)
 - Longer design cycle
Design Objectives

Order of Importance for Objectives

- Sealing (11/15)
- Thruster layout
- Sensor layout
- Vehicle Trim
- Manipulator/Actuator Layout (11/22)
- Drag Profile
- Weight savings
- Aesthetics
CUAUV System Design

● 3 groups
 ○ Structures
 ○ Actuators
 ○ Enclosures (Main Hull)

● 12 month design cycle
 ○ Concept and brainstorming: August
 ○ Design, modeling, simulation: September-October
 ○ Manufacturing: November-February
 ○ Testing and implementation: March-May
 ○ Summer testing and competition adjustments: June-July

● Key objectives of mechanical design
 ○ Keeping electronics dry
 ○ Optimizing ability to control vehicle
 ○ Creating reliable task manipulators
 ○ Learning and improving manufacturing techniques
CUAUUV Subsystems

- **Structures**
 - Mount all components
 - Provide rigidity and protection
 - Responsible for trim and optimal controls layout

- **Actuators**
 - Responsible for all competition manipulation tasks
 - Claw or grabbing mechanism is generally a must
 - Mix of electric and pneumatic

- **Enclosures (Main Hull)**
 - Holding and sealing all boards, computer, cameras, etc.
 - Optimizing connections and wire routing
 - Making everything accessible for testing
Structures Group

Mechanical System Design
Vehicle Layout: Case Study on Gemini
Actuators Group
Enclosures (Main Hull)
Enclosures (Main Hull)
Manufacturing Techniques

- **Mill, Lathe, CNC (in house)**
 - Improves skills of team members
 - Cheap
 - Wide range of material options

- **Water jetting, laser cutting**
 - No skill or resource time required
 - Lead time and cost could be issues

- **3D Printing**
 - Effective for many non-structural parts
 - Easy to iterate
 - Cost is really variable depending on resources available

- **Carbon Fiber**
 - Lightweight and strong
 - Expensive and if done in house requires time/skill
Questions?