PCB Design and Layout
Melissa Hamada
msh276@cornell.edu
Sunday, November 23rd, 2014
Overview

- High level description
- Basic definitions
- Schematic and layout tips
- Choosing components
- Companies for manufacturing and sponsorship
- General tips
Why custom board design?

- Form factor
- Design experience
- Tunable parameters (cutoff voltage, current draw, area, # of channels...
How custom should I go?

(Example: battery management)

- No custom electronics
 - Off the shelf: input and output power, communication to read status of pack
- Custom electronics with specialized ICs
 - Dedicated battery management IC
- Lower level implementation
 - Voltage, current, and temperature regulation done independently
Definitions

● Printed circuit board (PCB)
 ○ Mechanical platform for connecting and holding electrical components in place

● Embedded system
 ○ Computer system used to directly manipulate a hardware function/parts
 ○ Real-time computing

● Computer-aided design (CAD)
Definitions (cont.)

- **Schematic**
 - Graphical/symbolic description of interconnects

- **Layout**
 - Representation of final (physical) board
 - Interconnects and element mounting in copper
Task Breakdown/High Level Description

- “What”
- What does the board need to accomplish?
- Setting goals and design priorities for the task
Tips for Researching (Example: Custom motor controller)

- “How”
- Common implementations
 - Industry and hobbyists
- Functionality
- Feasibility
- Tradeoffs
Setting a Design

(Example: Custom motor controller)

- “How”
- Consider the mechanical and software constraints of your vehicle
 - Type of motor
 - Motor specs and inputs
 - Battery output power
 - Communication protocol (RS232 for reduction in noise susceptibility)
Design Software

- Electronic CAD software for schematic design and PCB board layout
 - gEDA
 - EAGLE CAD
- When deciding which software to use
 - Cost (accessibility for all members)
 - Number of layers
 - Built in libraries
Schematics

- Graphical/symbolic representation of the design
 - Describes component interconnects
Choosing the Right Parts for me

- Do your research
- Samples and sponsorship
 - TI, Analog Devices, Linear Technology, Microchip, Maxim Integrated…
 - If you’re a student, university sponsorship
- Added complexity to other systems?
 - e.g. “Does this ADC need an external reference voltage?”
Tips for Schematic Design

- Complete the schematic systematically to avoid forgetting something
- Lay items in an easy to follow manner
- Labeled fully
 - Netnames (connections between components) are named explicitly, device identifier is unique...
Layout

- Design of the physical PCB, plan location of components
- Layout should make sense from start to finish, group relevant components on the schematic together
More on Choosing Components

- What footprints can I solder by hand?
 - Chip resistors and capacitors down to 0603
 - Packages with thru hole mounting or “gull-wing” pins
 - Note: for more compact designs, you can look into using a reflow oven and solder pasted to populate more difficult footprints
Choosing the Right Connectors

- What are my power requirements?
- Board-to-wire versus Blindmate connectors
Tips for an Effective Layout

- Plan the location of components well for easier routing
- Avoid sharp angles on “high speed” signal traces to reduce reflections
- Place decoupling capacitors near the pins they are decoupling
- Plan out location of power and gnd rails to minimize return path
- Do not form closed loops in traces as that will form antennas around the board
- Use testpoints and status LEDs to help debugging process

If you’re interested in more tips, send me an email and I’d be happy to send a more complete list
Tips for an Effective Layout (cont.)

- Confirm the settings before doing anything
- Design Rule Checker (DRC)
 - Property of the printing company: sets valid copper width and spacing in order for the company to print (typically around 8-10mil spacing and 10mil rings)
 - mil = 1/1000 inches
- Number of layers (we do 2-4 depending on the board)
 - Shielding properties from dedicated ground plane
 - Cost considerations
Board Manufacturing

- Gerber files
- Our primary manufacturer: Nexlogic
 - roughly 2 week lead time for printing boards
Board Testing and Debugging

● Populate board “in order”
 ○ Power regulators for proper output
 ○ ICs and “innermost” components

● Well labeled test points and LED indicators will allow for debugging by inspection and multimeter while the board is still in the vehicle
Keeping an Aggressive Schedule

- Steps to a finalized design
 - Research
 - High level design
 - Schematic
 - Simulations
 - Layout
 - Soldering
 - Testing and debugging
 - Iteration
Keeping an Aggressive Schedule (cont.)

- Board design during Fall semester (4 months)
- Soldering and implementation (1 month)
- Testing and debugging (5 months)

Remember:
- Board printing (2-4 weeks)
- Ordering parts (4-7 days)
- Sample requests (3-14 days)
Keeping an Aggressive Schedule (cont.)

- Multiple stage design reviews
 - Smaller design review with subteam leader
 - Full electrical team review
Don’t Forget your Documentation!

- Technical design documents
 - Research and resources
 - How the design works at a high level
 - Breakdown each section
 - Improvements for future revisions of the project

- User Manual
 - How to populate and test the PCB
 - How to use in the vehicle
 - Possible failure modes
Tips for Custom Board Design

- Research previous implementations
- Aggressive scheduling
- Schematic design
 - Choosing the right components
- Layout design
- Integration and Testing
- Iteration
- Documentation
Questions?